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Abstract. The renormalisation of field-theoretic models of the ’true’ self-avoiding random 
walk is analysed. For short-range interactions, the field theory is shown to be renormalisable 
only in a special case, which corresponds to the problem of a random walk in a random 
environment, and non-renormalisable otherwise. The long-range version of the field theory 
is shown to be renormalisable in a larger region of the parameter space. In the case which 
corresponds to the original long-range ‘true’ self-avoiding random walk, the renormalisation 
group analysis is carried out to two-loop order. Anomalous dimensions of various corn- 
posite operators are calculated and the crossover between scaling regimes described by 
short-range and long-range models is discussed. 

1. Introduction 

Models of stochastic processes incorporating effects of long memory have attracted 
considerable interest [l-61. An early model of this kind is the ‘true’ self-avoiding 
random walk (TSAW) [ 11, in which the random walk dynamically tends to avoid places 
it has visited earlier. This model has statistical properties which drastically differ from 
those of the usual self-avoiding walk problem related to the account of excluded-volume 
effects in polymer statistics [7]. It was soon realised that the TSAW could be cast into 
the form of a field theory [3], and thus field-theoretic methods [8] could be used to 
study the asymptotic behaviour of such walks. In the original TSAW, the self-interaction 
of the random walk was local in space, but the generalisation to long-range repulsion 
has also been suggested and analysed in a similar fashion [4]. 

In this paper we show that in earlier work an infinite set of marginal operators has 
been overlooked, the account of which renders the field theory, in general, non- 
renormalisable. More explicitly, the field-theoretic model [ 31 is characterised by three 
coupling constants g,  , g, and g,, and we show that, in the space of these three 
parameters, the model is renormalisable only on the line g, = g,, g, = 0, where its 
asymptotic behaviour coincides with that of the model of random walk in random 
velocity field [ 9 ] .  This implies that the model has no predictive power at and below 
its upper critical dimension d,  = 2. The long-range version of this model [4] also turns 
out to be non-renormalisable for arbitrary coupling constants. However, it is renor- 
malisable in the plane g2=0 ,  and we have calculated to two-loop order the beta 
function and the anomalous dimension of the diffusion coefficient of the long-range 
TSAW (to which corresponds the line g, = g, = 0). We have also calculated, to one-loop 
order, anomalous dimensions of several composite operators relevant to the analysis 
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of the crosssover from the scaling regime described by the long-range model to that 
described by the short-range model, which takes place in the limit a + 0 ( a  is the 
exponent, which characterises the power-like behaviour of the interaction in the 
long-range model). We also show that on the line g, = g, = 0 the anomalous dimension 
of the diffusion coefficient is determined exactly by the fixed-point equation of the RG. 

The paper is set up as follows. In  section 2 we present a novel derivation of the 
field-theoretic formalism from the original stochastic equations [3,4], without resort 
to the Fock-space formalism for classical objects [lo]. Section 3 is devoted to the 
analysis of the renormalisability of the corresponding field theory in both short-range 
and long-range cases. The results of the standard renormalisation group (RG)  analysis 
are also exposed here. In section 4 we calculate the anomalous dimensions of various 
composite operators of the long-range TSAW, and discuss the behaviour of the model 
at small a. In section 5 we summarise the main results of the paper. Part of the results 
of this paper has been presented earlier [5]. 

2. Derivation of the field theory 

In the continuum limit, the TSAW is defined by the equations [3] 

where R is the position of the random walker, and q is a Gaussian noise with zero 
mean and correlation function qm(  f)q,( t ' )  = 2D0S( t ' -  t)S,,,, where DO is the 'bare' 
diffusion coefficient. These equations describe the short-range TSAW, whereas for the 
long-range version (1) is replaced by [4] 

where the function 4 is related to p as 

<6(x, t )  = dx'  K ( x - - x ' ) p ( x ' ,  t )  

with the kernel K ( x )  defined by 

We will be interested in the probability distribution P ( x ,  t )  of the random walks started 
at the origin 

P ( x ,  t ) =  s ( x - R ( t ) )  

where R( t )  is the solution of the problem (11, (2) with the initial condition R ( 0 )  = 0. 
For the retarded Green function 

G(x, t )  = e ( t ) P ( x ,  t )  
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a functional integral representation has been constructed using sophisticated Fock- 
space treatment of classical objects [ 101. We shall present here an alternative derivation 
of the field theory, which is fairly straightforward, and conceptually simpler than the 
Fock space method. 

To this end, we introduce the generalised distribution function P defined by 

P(x, t; A)= 6(x-R( t ) )  exp( J1 'drA(r )R(r ) )  ( 5 )  

and depending functionally on an auxiliary vector function A. Obviously P ( x ,  t )  = 
P(x, t ;  0). Differentiating the definition (5) with respect to time t we obtain 

a,P(x, t ;  A )  = S ( X  -R(  t ) )A(  t )R(  t )  exp( 5 d7AR) 

-VS(x  - R (  t ) )  - dR(t )  exp( I d r  AR) 
d t  

= A (  t ) x P ( x ,  1; A )  

+ VS(x - R(  t ) ) (  g, lof d r  V K (R(  t )  - R(  7)) - q( t )  

where the stochastic equation (3) has been used. The noise 7 has a Gaussian distribu- 
tion, therefore the identity 

holds for an arbitrary functional F of 7. Using this identity, and taking also into 
account that SR,( f)/ST,( t )  = S , , / 2 ,  we arrive at the equation 

a,P(x, t ;  A) = (D ,v~+AX)P(X,  t ;  A )  

+g,V Iof d r [ V K ( R ( t ) - R ( r ) ) S ( x - R ( t ) )  exp( I'd.AR)]. 0 

Owing to the source term exp(jdrAR),  we may replace R ( r )  in the argument of K 
by the operator S/SA(r),  and obtain 

We solve the equation for the corresponding Green function &(x, t ;  A )  = e( t ) P ( x ,  t ;  A) 

by iterations. At zeroth order this yields 

Go = L-' ~ = a ,  - D ~ V ~ - X A .  

For clarity, we introduce another pair of arguments of the Green functions to keep 
track of the (so far implicit) dependence on the initial conditions: we denote the Green 
function 6 of the problem with the initial condition R(  t ' )  = x' by G(x, t ;  x', t ' ) .  In 



2482 S E Derkachov, J Honkonen and A N Vasil’ev 

these terms G(x, t )  = G(x, t ;  0, 0), and differentiating the definition of the ‘bare’ propa- 
gator Go, 

- 
[d , -DoV’-Ax]Go(x,  t ;  0 , 0 ) = 6 ( t ) 6 ( x )  (6) 

with respect to A, we obtain 

The retarded Green functions on the right-hand side of this equation make the derivative 
SG0/ SA vanish for r < 0 and r > t .  Therefore 

s 2 E 0 ( x ,  t ;  O , O )  
6A( r‘)6A( r )  

Since G0(x, t ;  x’, t’) + 6(x -x’ ) ,  t + t’+, we arrive at the equation 

‘; OY = 1 dx‘ G0(x, t ;  x’, T ) X ~ ’ ~ ~ ( X ~ ,  T ;  0,O). 
SA(  T)’ 

Analogously 

To find the first-order expression for 6 we calculate the quantity 

making use of the relations (9) we find it to be 

tVK(y )Go(x ,  t ;  0,O) - V K ( y )  d r  dx‘ G~(x, t ;  x’, r)GO(d, T,  0,O) I, I 
+J0‘dr  1 dx’G,(x, t ;  x’, r ) V K ( y - x ’ ) G 0 ( x ’ ,  r,O,O). 

From the definition of the bare propagator (6) we obtain the relation 

L[  tG,(x, t ;  0, O ) ]  = Go(x, t ;  0,O) + tLGo(x, t ;  0,O) = Go(x, t ;  0,O) 

which yields 

tGo(x, t ;  0,O) = J0‘ d r  1 dx‘ G0(x, t ;  x’, r)G0(xf,  T ;  0,O). 

As a consequence of this equation the first two terms cancel on the right-hand side of 
(10 ) .  Therefore 

= jo‘ d r  j dx’ C?,(x, t ;  x’, r ) V K ( y - x f ) G o ( x ’ ,  T ;  0,O). (11) 

This relation shows how the ‘interaction operator’ d r  V K ( x -  S / S A ( T ) )  acts on the 
bare propagator eo. Let us denote the propagator Go by a full line with an arrow 
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showing the direction of time, and the function K by a broken line. Then (1 1) may 
be expressed in a convenient graphical form depicted in figure 1, where the slash on 
the broken line corresponds to the derivative in (1 1). It is an essential property of this 
operator that it acts on a product of Go with successive time arguments as a first-order 
differential operator, for instance ( t  > t '>  0) 

x [Go(x, t ;  x', t ')Go(xf, t ' ;  0, O)]  

= [ I l l  d r  V K ( y -&) do(x, t ;  x', t ' )  e0(x ' ,  t ' ;  0, 0) I 
This allows for a simple and straightforward construction of the perturbation expansion 
for 6, from which we obtain G setting A = 0. According to the relations (1 1) and 
(12), at every step of the construction of the graphical representation of the perturbation 
expansion, the operator 5 d r  VK(x - S / S A ( T ) )  from each graph of the preceding step 
creates a sum of graphs, in which one of the full lines of the original graph gives rise 
to two full lines with a broken line emerging from the junction between them, and 
ending at the left end of the original graph. Finally, a full line corresponding to the 
extra factor G, of the right-hand side of (11) is attached to the left end of the graphs 
created by the operator d r  V K ( x -  S / 'SA(r ) ) .  For the first terms of the perturbation 
expansion of G we obtain the graphical representation depicted in figure 2, in which 

-=A 
x, I 0,o  x, t x', 7 

Figure 1. Graphical representation of the action of the operator d7  V K ( x  - S/BA(T)) on 
the bare propagator 6,, depicted by a full line with an arrow showing the direction of 
time. Broken line corresponds to the function K,  and the slash to the operator V .  Integral 
over the intermediate argument xi is implied. 

Figure 2. Graphs corresponding to the leading terms of the perturbation expansion of the 
Green function G of the TSAW. The full lines correspond to the factor G , ( q , w ) =  
l / ( - iw+Doqz) ,  the broken lines to the factor K ( q ) = 1 / q 2 " ,  and the slashes to vectors 
-iq, where q is the momentum flowing in the direction shown by the arrow. The coupling 
constant factor - g ,  is prescribed to the three-point vertex with slashes. 
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the coupling constant factor -g, is prescribed to the three-point vertex with derivatives 
There is no frequency flow through the broken lines so far. Obviously, this is the 
perturbation expansion of the full propagator 

G(x -x’, t - t ’ )  

=(sob, t ) + ( x ’ ,  0 )  

= I Dcp D+ D+ D$cp(x, t ) + ( x ’ ,  t ’ )  exp(S) 

x det[d, - DoV2 - g , V ( V + )  - $1 
where the action S is of the form 

S = -  d t  dxdx’$(x,  f ) K - ’ ( x - x ’ ) d , $ ( x ’ ,  f ) +  dtdx{G(x, t ) [ -a ,+DoV2]cp(x ,  t )  

(14) 

The effect of the determinant in the functional integral (13)  is to remove graphs with 
loops corresponding to dq dw Go(q, w ) ,  which are not present in the original construc- 
tion of figure 2 (closed loops with two or more retarded propagators Go vanish 
automatically). However, we shall be using dimensional regularisation, in which such 
terms are zero by definition, and therefore this determinant does not show at all. The 
auxiliary fields + and $-are time dependent in the action (14) (which corresponds to 
the propagator (+(x, t ) + ( x ’ ,  t ’ ) ) =  e ( t - t ’ ) K ( x - x ‘ )  instead of the factor K ( x - x ’ )  in 
the original expansion of figure 2) to reproduce correctly the correlation between the 
location of derivatives in the expansion of figure 2 and the direction of the time flow: 
of the two vertices connected by each broken line the vertex with derivatives corresponds 
to a later moment of time than the vertex without derivatives. Therefore, the graphs 
of figure 2 when regarded as graphs of the field theory (14), contain loop integrals 
over frequencies. However, when these frequency integrals are performed, the original 
‘static’ graphs result. 

The action (14) covers actually both long-range and short-range versions of the 
TSAW, but it is convenient to integrate out the axuiliary fields $ and 4 in the short-range 
case, which leads to the action 

S =  dt  dx+(x, f ) [ -a ,+D,V2]cp(x ,  t )  

I 
-g,V+(x, t)cp(x, t)V+(x, t ) +  $(x, t ) c p ( X ,  t ) + k  [)I. 

I 

I 
-g ,  I dt  di’dxcp(x, t ) V + ( x ,  t ) e ( f  -t’)V[cp(x, t ’ ) + ( x ,  t ‘ ) ]  ( 1 5 )  

with interaction local in space but non-local in time. 

3. Renormalisation of the model and calculation of the anomalous 
dimensions of parameters 

The upper critical dimension of the field theory (15) is two, and power counting shows 
that, in addition to the original interaction vertex, two more four-point interaction 
terms are at least marginal and have to be included in the interaction, which leads to 
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the interaction Sint of the form 

Sint= dt  dt’  dx{-g,cp(x, t ) V $ ( x ,  t ) 8 ( t  - t ‘ )V[cp (x ,  t ’ ) $ ( x ,  t’)] I 
+g,Vcp(x, t)VG(x, t ) @ ( t -  t‘)cp(x, t ’ ) $ ( X ,  t’) 

+g,cp(x, t)V$(x, t ) @ ( f  - t’)Vq(x, t’)cp‘(x, 0) (16) 
where the coupling constants corresponding to the new vertex structures are denoted 
by g, and g,. The RG analysis of the field theory has been carried out at one-loop 
level [ 31 but, unfortunately, it is not sufficient to consider only the four-point interaction 
(16), as was pointed out recently [5]. Consider the one-loop graphs of figure 3, which 
contribute to the four-point vertex renormalisation (for brevity, we have shown graphs 
containing the g, vertex only). In these graphs, the dotted line corresponds to the 8 
function factor of the retarded interaction (16). The graph of figure 3( c) ,  for instance, 
corresponds to the following analytic expression (for simplicity, we set the external 
momenta flowing in the lower vertices equal to zero): 

Integrating over the frequency we obtain 

1 

x ((-io,,+ Doq2)(i wI  - D,qZ)[-i(w, + U,)+ Do(q+p) l+  D,q’] 

>. 
1 + 

[i(w, + w 2 )  + o](-i E;=, wI  + Doq2)[io2+ Do(q +PI’] 
The first term here is obviously convergent at large momenta, whereas the momentum 
integral is divergent in the second term, which contains a factor l / [ i (wl+w2)+o]  
corresponding to the retarded structure of the interaction vertices in (16). This factorisa- 
tion is a generic feature of the vertex graphs; therefore the relevant contribution of 
each graph to the vertex renormalisation constants is given by an effective ‘static’ graph 
with momentum integration only, in which the 8 function factors of dotted lines are 
replaced by unity and the internal frequencies are set equal to zero. 

( a )  ( b )  ( C )  ( d )  
Figure 3. One-loop graphs of the short-range TSAW field theory ( 1 5 )  and (16), which 
renormalise the four-point interaction term. For brevity, we have depicted graphs with g, 
vertex only. The dotted line corresponds to the factor l/(-iw + o ) ,  where w is the frequency 
flowing through the line. These graphs give rise also to the vertex with g,, and for the 
generel case (16) similar graphs with all vertex structures (and thus with differently arranged 
slashes) must be taken into account. 
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The reason why it is not sufficient to consider the four-point interaction only is 
that g, vertices can be attached in arbitrary number to these graphs without any change 
in the dimensionality of the corresponding momentum integral: if the g, vertex is 
added in such a way that the derivatives at the end of the dotted line act on internal 
lines, then the corresponding momenta dimensionally compensate for the additional 
propagator appearing in the extended graph, and the large-momentum behaviour of 
the integrand is thus the same as in the original graph. This is illustrated by the 
examples of figure 4. In general, the g, vertex is inevitably generated by renormalisation, 
which therefore gives rise to an infinite set of divergences of different types, i.e. the 
field theory (15) and (16) is not renormalisable. 

In the standard renormalisation scheme, we have to add to the action an interaction 
term with a coupling constant for each new type of divergent graph, after which we 
obtain a physically useless action with an infinite number of parameters which are, in 
general, independent of each other. In the present case, all the new divergences are 
logarithmic, the upper critical dimension d ,  = 2 is not changed, and the action (16) 
remains applicable in the perturbation theory above the upper critical dimension. If, 
by some symmetry or other reason, the resulting infinite set of interaction terms could 
be presented in the form of a functional of the fields with a finite number of parameters, 
the model could remain useful. We have not been able to establish such a connection 
between the new interaction terms in the present model. Physically, the fact that the 
action (16) is not renormalisable indicates that some contributions neglected in the 
derivation of the continuum problem (1) and ( 2 )  from the discrete definition [ l ]  
probably are essential in determining the asymptotic behaviour of the TSAW analytically. 

There are, however, two cases, in which the g, vertex is not generated by renormalisa- 
tion, if it is absent in the initial model. First, if we choose g, = g, = 0,  g, # 0, then it 
may readily be checked that this model is self-consistent in the sense that four-point 
vertex structures corresponding to g, and g, are absent in the perturbation expansion. 
Nevertheless, this model also turns out to be non-renormalisable, and the reason is 
that it contains another set of divergent I P I  graphs with arbitrary number of external 
Q and (2, legs. Examples of these are shown in figure 5 .  Second, if we choose g, = 0, 
g, = g 3  # 0, the interaction (16) takes the form 

S, , ,= -g ,  dt  dr’dxcp(x, t ) V g ( x ,  t ) e ( t  - t’)cp(x, t ’ ) V + ( x ,  r ’ )  (17)  

which, apart from the retarded character of the interaction, coincides with the interac- 
tion of the field-theoretic model of random walk in random environment (‘random 

I 

( a )  ( 6 )  ( C )  

Figure 4. Examples of the structure of divergent one-loop graphs from the IPI graphs of 
figure 2: ( a )  is the original four-point graph and ( b )  and ( c )  are, respectively, six and eight 
point graphs obtained by attaching g, vertices to it .  
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( a )  ( b )  (C, 

Figure 5. Examples of divergent one-loop graphs of the short-range model (16) in the case 
g, = g, = 0, g, # 0. Graphs ( a ) ,  ( b )  and ( c )  yield divergent contributions to four, six- and 
eight-point , P I  Green functions, respectively, and it is clear from these examples that there 
are similar contributions to Green functions of arbitrary order. 

random walk’) [ 9 ] .  The essential feature of the interaction (17 )  is that the (p’ field 
enters only with a derivative. In the graphs of perturbation theory, the corresponding 
momenta therefore factorise at the vertices with external (p’ legs, thus rendering all 
graphs with more than two external 6 legs superficially convergent (i.e. they yield only 
finite contributions to renormalisation constants after subtraction of divergences corre- 
sponding to divergent subgraphs). As a result, the model with the interaction (17)  is 
multiplicatively renormalisable with the same long-time asymptotic behaviour as in 
the model of random walk in random velocity field [ 9 ] .  From these arguments it 
follows that, apart from the special case g, = g,, g2 = 0, the previous analyses [3] of 
this model are not sufficient to determine the correct long-time behaviour for d S 2. 

The situation is, however, different in the case of the long-range TSAW. In the 
formalism of two fields (c and 6 the kernel (4) would lead to non-local in space 
interactions, and to avoid them we prefer not integrate out the auxiliary scalar fields 
i,b, 6 of the action (14), and introduce auxiliary vector fields A,  A” to ‘localise’ the 
interaction corresponding to the second and third terms in the right-hand side of (16). 
For the retarted Green function G of the long-range model we thus write the functional 
integral in the form 

G(x-x’ ,  t - t ’ ) =  D(cD$d+D$DADADA(c(x,t)$(x’,t’)exp(S) I 
with the action S 

S =  - d t  dxdx’[A“(x, t ) K - ( x - x ’ ) a , A ( x ‘ ,  t ) + t j ( x ,  t ) K - ’ ( x - x ’ ) a , + ( x ‘ ,  t ) ]  

+ j dt  dx{+(x, [ ) [ - a ,  + ~ ~ ~ 2 1 ( c ( x ,  t )  - (8 ,  - g3)v+(x, t)cp(x, t)V@(x, t )  

I 
+g2i,b(x, t)V(c(x, t)V6(x, 0 + 6 ( x ,  t ) ( c ( x ,  t ) + ( x ,  1 )  

+g3A(x, t)v(x, t)V@(x, t ) - & ,  t ) ( c ( x ,  t)Vcp‘(x, t ) )  (18) 
where the kernel K is defined by the relation (4), and we have used the same notation 
for the coupling constants as in the short-range case (16). We have cast the local 
action in the manifestly multiplicatively renormalisable form (18) instead of the action 



2488 S E Derkachov, J Honkonen and A N Vasil’ev 

presented earlier [5]. These expressions are connected by a simple transformation of 
the auxiliary fields: shifting the fields in the action (18) according to A + A - V $ ,  
4 + 4 - V i  and integrating by parts in the last term we recover the previous form of 
the local action [ 5 ] .  The field theory for the long-range TSAW problem (2)-(4) corre- 
sponds to the choice g, # 0, g, = g, = 0 in the action (18). Power counting shows that 
the upper critical dimension d, is now equal to d, = 2 + 2a,  and, the most remarkable 
difference from the short-range case, the ‘bad’ one-particle irreducible ( 1  PI)  four-point 
graphs of figure 3 are convergent for finite a > 0. It is not difficult to see that all I P I  
graphs, which have more than two external cp and 4 legs, do not contain superficial 
divergences in this case, and therefore they are not relevant in the RG sense. However, 
three-point graphs with external cp and 4 legs (examples of which are the triangular 
IPI  subgraphs in figure 3) still contain, in general, superficial divergences, and they 
give rise to the renormalisation of the interaction vertices in (18). It should be noted 
that the structure of each three-point interaction vertex in the action (18) is preserved 
separately under renormalisation: e.g. if we set g, # 0, and g, = g, = 0, then vertices 
corresponding to the coupling constants g2 and g, are not generated by renormalisation. 
To see this in the case g, = g, = 0, g, # 0 it is convenient to cast the effective interaction 
in the form g,AcpVG + k j V c p  for which the graphical analysis is simple. This implies, 
in particular, that the field-theoretic version of the long-range TSAW [4] (with g, # 0 
only) is multiplicatively renormalisable, whereas in the short-range case the interaction 
corresponding to g, appears with the subsequent proliferation of marginal operators. 
It is not difficult to see, however, that in the presence of the g, vertex also the general 
long-range model (18) ceases to be renormalisable; indeed, if we attach g, vertices to 
logarithmically divergent three-point graphs, this does not change the large-momentum 
behaviour of the corresponding loop integral and we are again faced with the problem 
of generation of an infinite set of marginal operators. Therefore, we conclude that 
even in the long-range case the field theory (18) is renormalisable, if and only if g, = 0. 

Summarising the results of the preceding analysis we arrive at the conclusion that 
the short-range field theory of the TSAW (16) is renormalisable only if g,  = g,, g, = 0, 
in which case it coincides with the model of random walk in unconstrained random 
field [9]. The long-range generalisation (18) is renormalisable if g, = 0, and coincides 
with the unconstrained long-range random random walk problem [ 1 1 ,  121, when g, = g,. 

We have carried out the RG analysis of the long-range TSAW (8, # 0, g, = g, = 0) to 
two-loop order. For convenience, we introduce a new coupling constant u , , ~ =  
glDi2C,,  where C, = [21r2a7rltar(l + a)]-’, and write the basic action [13] (which 
contains renormalised parameters only) in the form 

S s = -  d t d x d x ’ $ ( ~ ,  t )K-’ (x -x’ )d ,$(X’ ,  t ) +  dtdx{G(x, t)[-a,+DV2]cp(x, t )  

(19) 
where p is the scale setting parameter, and E = 2 + 2 a  - d. The renormalised parameters 
of this action are related to the bare ones as 

I 
- UIFED2CnlV+(X, t)cp(x, tPG(x ,  t ) +  $(x, t)cp(x, t )G(x,  t ) l  

Do = Z,D ul,o = u,pez,z;* (20) 

I 

where Z ,  and Z ,  are, respectively, the renormalisation constants of the diffusion 
coefficient, and the first interaction vertex of the action (19) (the second vertex is not 
renormalised). 

The relation between the renormalised (G) and bare (G‘O’) Green functions 

G ( w ,  4; ui 9 0, P )  = G‘’ ’ (w, 4; ~1.0, Do) 
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yields the equation 
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(21) 

where the beta function p ,  is defined as 

and the functions y as 

x = l , D .  

The subscript ‘0’ indicates that the partial derivatives are taken at fixed values of the 
bare parameters u , , ~  and Do. From (21) and dimensional arguments we obtain for the 
mean square displacement RZ(t) of the random walk the following equation 

from which the asymptotic behaviour of I?’(()  at long times may be extracted. 
We use dimensional regularisation with minimal subtractions, and calculating the 

contribution of the self-energy graphs depicted in figure 2 ,  we obtain for the renormali- 
sation coefficient Z, of the diffusion coefficient the expression 

( - l +  2a ( l  + a )  
ZD=1-- + 

( 1  + a ) &  4( 1 + a)’&’ 
whereas the renormalisation constant Z, of the interaction vertex is extracted from the 
vertex graphs of figure 6 in the form 

zl=l- U1 + U; ( - 2 + 2 + 4 a + a 2  .), 
2 (  1 + a)& 8( 1 + ff(l+cU) 

Figure 6. One-particle irreducible vertex graphs, which contribute to the renormalisation 
constant Z, at one-loop ( a )  and two-loop ( b )  level. 
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Note the poles at a = 0 in the second-order terms. They appear due to the fact that 
two-loop graphs contain the I P I  four-point graphs similar to those of figure 3 as 
subgraphs, which are convergent for finite a, but become divergent in the limit a +O. 
This shows in the relations (22) and (23) in the form of poles l/a. This is typical of 
models with long-range correlations [12, 141, and at some a > a* = O ( E )  leads to 
crossover from the scaling behaviour described by the model with long-range correla- 
tions to the scaling described by the short-range correlated model. We shall discuss - 
this in detail in the next section. 

From (20)-(23) we obtain the following expression for the beta function: 

3 2+6a+3a2 
P l ( U l )  = U I (  - e  +2(l+cu) U1 - 4a(1 + . ) 3  

The non-trivial fixed point 

is perturbatively infrared stable, and thus controls the long-dista ce and la time 
behaviour of the model. The anomalous dimension of the diffusion coefficient is the 
value of the function 

Y D  = p- 

at the fixed point of RG. For d < d,= 2 + 2 a ,  we obtain 

which determines the exponent Y through the relation v = 1/ (2+ YE), and thus the 
asymptotic behaviour of the model at the long-time limit. For the mean-square 
displacement of the random walker we obtain 

which implies superdiffusive behaviour. Logarithmic enhancement of diffusion 

results at the upper critical dimension d,  = 2 + 2a.  
Finally, we show that in the other renormalisable case with a single coupling 

constant (8, = g2  = 0, g3 f 0) of the long-range model ( l8 ) ,  the anomalous dimension 
rT, of the diffusion coefficient may be calculated exactly in the perturbation theory. 
The reason is that, up to a finite constant, the interaction vertex is not renormalised. 
The same feature has also been detected in the Navier-Stokes equation with stochastic 
driving force [15], and in the random random walk problem [12]. In these models 
‘non-renormalisation’ is a consequence of either Galilean invariance or the transverse 
character of the vector field, whereas in the present case the reason of non-renormalisa- 
tion is different. Consider the action (18) with the last two interaction terms only, 
then it is not difficult to see that momenta, which correspond to the derivatives in 
the interaction terms, factorise in three-point I P I  graphs at the vertices with external rp 
and 4 legs. This renders the remaining loop integrals superficially convergent. In the 
minimal subtraction scheme the corresponding renormalisation constant is therefore 
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trivial: Z3 = 1. From (26) and the definitions ~ 3 , o  = g3Dg2Cm, 
obtain 

= u3pEZ3ZL2 we 

p 3 ( U 3 ) = P p  = U3[-E-2YD(U3)]* 
au31  aP 0 

From this relation it follows that the fixed-point equation p3( U:) = 0 determines the 
anomalous dimension y% = yD( u3 = U:) to all orders in perturbation theory. For the 
anomalous asymptotic behaviour of the mean-square displacement we obtain 

- 
d < d,  = 2+2n  (27) R2( t )  - t 2 ’ ( 2 - E / 2 )  

or 

R 2 ( t )  - t(ln t)”’ d = d ,  = 2 -k 2n 

which are the same as in the model of random walk in transverse random velocity 
field with long-range correlations [12]. It is also interesting to note that the relation 
(27) corresponds to a value of the exponent Y, which is exactly the same as was 
predicted in the long-range TSAW problem (2)-(4) from a simple Flory argument [4]. 

4. Renormalisation of composite operators and crossover from long-range 
to short-range scaling 

We are interested in the anomalous behaviour of the scalar composite operators which 
correspond to the four-point interaction vertices of the short-range model (16), since 
they are of importance to investigation of the crossover between the scaling regimes 
described by long-range and short-range models. For these composite operators, we 
introduce the notation 

O?’= dx d t  dt’cp(x, t ) V @ ( x ,  t ) e ( t - t ’ )V[cp(x ,  t ‘ ) + ( x ,  r ’ ) ]  1 1 1  

From the relations between renormalised (r) and bare 
omit momentum and frequency arguments for brevity) 

I P I  Green functions (we 

r4o:4)(u1,D9 P 1 3 r i ~ ~ ~ 0 i 4 l (  ~ 1 ,  0 ,  P 1 
i = l , 2 , 3  (41 ( 0 )  

= z t ~  r407’ (u I ,0 ,  DO) 
we obtain 

[( aP a au1 aD a )  1 a 
P -+ p1 - + Y,D- + y4iJ r40;4) = o 

where the matrix y4 is defined as 
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Dimensional analysis yeilds 

and 

From the relations (29)-(31) we obtain the following expressions for the scaling 
dimensions of the composite operators 0"' 

d4,z = d - 2  - 2 y , (  U?) + A i 4 '  i = l , 2 , 3  (32) 

where A'4 '  are the eigenvalues of the matrix y4 at the fixed point of the RG equations. 
It should be noted that, in general, these scaling dimension are not prescribed to the 
composite operators themselves, but to their certain linear combinations. 

Calculating the one-loop graphs of figure 7 ,  we arrive at the matrix 

312a 2 0 
y4=&[; 1+;a 

which has, at the fixed point of RG, the following eigenvalues: 

Ay' =5(3 + 2 a ) ~  
Ak4' = 1 , ( - ~ + ~ c Y ) E  

Figure 7. Graphs, which, at one-loop level, renormalise the three composite operators 
J dx d t  dt '  cpViO(  t - r ' )C (&) ,  5 dx d t  d t '  V q O + O ( t  - [ ' ) ( p i ,  and 5 dx dr dt '  cpV$O(t - 
r')Ccpi corresponding to the four-point interaction terms of the short-range model (16). 
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At one-loop level, the third eigenvalue corresponds to anomalous scaling of the operator 
OY’, whereas the others are to be prescribed to linear combinations of all three operators 
(28). Substituting these values to the relations (32) we find the scaling dimensions of 
these combinations of composite operators, which all turn out to be positive for a > 0, 
&>O. 

We now turn to the analysis of the effects of the poles at a = 0 appearing in the 
coefficients of the RG equations. These singularities prevent the limit a + 0 in the 
formulae for the long-range model and thus signal that additional divergences appear 
in this limit. The crossover between scaling regimes described by pairs of short-range 
and long-range correlated field theories has been analysed earlier [ 12, 141, and we 
proceed in the same fashion as in the analysis of the model of random walk in random 
environment [12] (‘random random walk’), which is closely related to the present 
model, There, the anomalous dimension of the relevant composite operator of the 
type (28) turns out to be negative at the fixed point of RG, and therefore for small 
enough values of a the scaling dimension of the composite operator becomes negative, 
indicating that the operator has become relevant, and thus it has to be taken into 
account in the renormalisation procedure. However, all three anomalous dimensions 
in the present case turn out to be positive for a > 0, E > 0, and therefore do not yield 
any sign of the scaling description of the long-range model becoming inconsistent at 
a + 0. This situation is similar to that in the analysis of the crossover between long-range 
and short-range scaling behaviour in the p4 model [14]. There is, however, another 
source of instability of the long-range scaling: unlike the random random walk model, 
the singular at a = 0 term in the expression for the beta function (24) is negative, and 
thus for small enough a the fixed point (25) becomes unstable and eventually disap- 
pears! Indeed, from (24) and (25) we obtain 

2 + 6 a + 3 a 2  
& * +  oiE3) ylul=u7=&- 9 a ( l + a )  

and in the limit a + 0 this expression changes sign at a* = 2 ~ / 9 ,  which then can be 
regarded as the limit of applicability of the RG analysis of the long-range model. 

5. Conclusion 

We have investigated the asymptotic behaviour of the model of the ‘true’ self-avoiding 
random walk for both short-range and long-range repulsion. We have presented a 
novel short derivation of the corresponding field theory, and analysed its renormalisabil- 
ity in both cases. We have shown that the short-range version is not renormalisable 
and is thus lacking predictive power, apart from the case g, = g,, g, = 0, which 
corresponds to the model of random walk in unconstrained random velocity field. On 
the other hand, the long-range model is shown to be renormalisable on the plane g2 = 0 
in the three-dimensional space of interaction parameters g, , g2 and 8,. For the case 
g, > 0, g, = g, = 0, which corresponds to the original problem of the long-range TSAW, 

we have calculated the beta function and anomalous dimension of the diffusion 
coefficient to two-loop order.Above the upper critical dimension d > d ,  = 2 + 2a 
normal diffusion results: R2( t )  - t ,  at& upper critical dimension a logarithmic 
enhancement of diffusion takes place: R2( t w l n  t)2/3, whereas at 2 + 2a - d = E > 0 
power-like superdiffusive behaviour occurs: R2( t )  - f ’ + E ~ 3 - ( 2 - 3 a - 6 0 2 ’ E 2 / [ 5 4 U ‘ 1 + u ’ 1  . In the 
case g, = g2 = 0, g3 > 0, we show that the anomalous behaviour of diffusion may be 



2494 S E Derkachov, J Honkonen and A N Vasil’ev 

determined perturbatively-tly, leading again to superdiffusive anomaly: R2( t )  - 
t(ln t ) ” 2  at d = 2+2a, and R 2 ( t )  - t(ln t ) 2 ” ( 2 - E ’ 2 ) ,  when d < 2+2a. This result is exactly 
the same as the Flory argument yields for this model. 

We have also calculated the anomalous dimensions of the scalar composite 
field operators: 5 dx d t  dt‘  (pVC;;O( t - t ’ )V(cpG) ,  5 dx d t  dt’  V(pV@( t - t ’ ) (pG,  and 
5 dx d t  dt’  (pV@( t - t’)Vcp$ at one-loop accuracy and using the results analysed the 
crossover from the scaling behaviour described by the long-range model to that 
described by the short-range one, when a + 0. In this model the non-trivial infrared- 
stable fixed point becomes unstable at a a e .  This is different from the crossover in 
the closely related model of random walk in random environment, in which the fixed 
point remains stable for small a, but the four-point operators become relevant, when 
a +- 0 due to the decreasing values of their anomalous dimensions. 
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